If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2=39
We move all terms to the left:
d^2-(39)=0
a = 1; b = 0; c = -39;
Δ = b2-4ac
Δ = 02-4·1·(-39)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{39}}{2*1}=\frac{0-2\sqrt{39}}{2} =-\frac{2\sqrt{39}}{2} =-\sqrt{39} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{39}}{2*1}=\frac{0+2\sqrt{39}}{2} =\frac{2\sqrt{39}}{2} =\sqrt{39} $
| -24x=-2(x+19) | | –(x/4)=–8 | | g=4(–3) | | x+4/16=-8 | | x-2.9=6.34 | | x-9.3=0.12 | | x+3.4=4.81 | | -n+3(4n+4)=3+2n | | -8=4+4g | | 32.1y+3.1+2.4y-8.2=34.5-5.1 | | 128xX=500 | | x+1.8=4.8 | | 180+8g=160+6g | | -24+-6u=-72 | | p+29–7=6 | | 12m.4=333 | | -7=5+2/9z | | 2a+3a+4a=5a18 | | x=44+30 | | 2x^2+12x+18=98 | | 1/2y=42/5 | | x/4+24= | | 2x−4=16 | | 11j-9=15j | | 3k-7=32 | | 8t+30+2t=180 | | -8=2+w/7 | | 5x-50=3+20 | | p+29/–7=6 | | 1/4z−5=−2 | | 2w+32+2w=180 | | 1,2(10k-16)+11=-2 |